当前位置: 首页 > 新闻资讯 > 一体化铁塔价格/批发/图片/品牌供应信息

一体化铁塔价格/批发/图片/品牌供应信息

发布时间:2024-02-12 22:38:50

  1. 【浅谈电力工程线路设计要点】电力工程结算注意要点
  2. 加快电力系统数字化转型

一、【浅谈电力工程线路设计要点】电力工程结算注意要点

  摘 要:在电力工程建设中,线路设计是一个重要的环节,它直接影响到线路建设的经济性、安全靠性和施工维护。如何保证电力线路的合理性是电气工作人员必须考虑的一项科学任务。文章针对电力线路的设计问题进行了分析。

关键词:电力工程;线路设计;要点

随着全球经济一体化进程不断加快,我国国民经济整体呈现出较为明显的增长趋势,电力工程建设作为国民经济发展的基础性行业也面临着前所未有的发展机遇与挑战。电力线路设计工作也逐步彰显出其重要意义。线路的设计是电力传输实施的前提和保障,设计质量的优劣直接关系到电力线路工程建设的经济效益、环境效益和社会效益。

1 线路路径的选择

线路路径的选择工作一般分为图上选线和野外选线两步。图上选线是先拟定出若干个路径方案,再进行资料收集和野外踏勘,进行技术经济分析比较,并取得有关单位的同意和签订协议书,确定一个路径的推荐方案。推荐方案报领导或上级(包括规划部门)审批后,进行野外选线,以确定线路的最终路径,进行线路终勘和杆塔定位等工作。

图上选线通常是在比例为五千分之一,万分之一或更大比例的地形图上进行。图上选线是在图板上,先将线路的起讫点标出,然后将一切可撰走线方案的转角点,用不同颜色的线连接起来,构成若千个路径的初步方案。按这些方案进行线路设计前期的资料收集,根据收集到的有关资料,舍去明显不合理的方案,对剩下的方案进行比较和计算,确定2~3 个较优方案,待野外踏勘后决定取舍,最终确定线路最佳方案。

2 杆塔的定位

2.1 平面图与断面图

在线路路径方案选定后,即可进行线路的终勘测量工作,为施工设计的定位工作以及日后的运行工作提供必要的资料和数据。终勘测量包括定线测量、平面测全和断面测量。定线测量是根据选定的线路路径,把线路的起讫点、转角点、方向点用标桩实地固定下来,并测出线路路径的实际长度。平面测量是将测量沿线路路径中心线左右10m 的带状区内的地物、地貌并绘制成平面图,为杆塔的定位工作提供依据。断面测量分为纵断面测量和横断面测量。前者是沿线路中心线测量断面上各点的标高,并绘制成纵断面图,供线路设计时排定杆塔位置;后者则是当垂直线路方向的地面坡度大于1:5 或起伏极不规则的地段,测量线路横断面各点的标高绘出横断面图,以供检验最大风偏时导线的安全距离等的需要。

2.2 杆塔的室内定位

杆塔定位工作分为室内定位和室外定位。室内定位是用最大弧垂模板在平断面图上排定杆塔位置的;室外定位是把室内排定的杆塔位置到野外现场复核校正,并用标桩固定下来。杆塔位置排定的是否适当,直接影响线路建设的经济合理性和运行的安全可靠性。杆塔定位的主要要求是导线的任一点在各种气象情况下均须保证对地面的安全距离(即限距)。在山地和丘陵地带定位时,为了满足限距要求,必须用最大弧垂模板确定定位档距。终端、转角、跨越、耐张等特种杆塔先行定位后,再分段用最大弧垂模板沿平断面图排定各耐张段的直线杆塔的位置。

3 杆塔定位后的校验

3.1 各种杆塔的设计条件的检查

杆塔的荷重条件,包括垂直档距、水平档距、最大档距、转角度数等,应不超过其设计允许值。水平档距和垂直档距,可以在定位图上量得。但图上量得的垂直档距是最大弧垂时的数值,当此值接近或超过杆塔设计条件时,应将其换算至设计气象条件下的数值后检查其是否超过设计允许值最大档距常受线间距离、悬点应力和断线张力等控制。定位的最大的档距应小于杆塔设计时的最大档距。线路的转角度数应小于转角杆塔设计的转角度数。超过时,应变动杆塔位置或更改杆塔型式或校验杆塔的强度。

3.2 直线杆塔摇摆角的校验

有些位于低处的杆塔,它的垂直档即较小所以当风吹导线时,悬垂串摇摆较大、当摇摆角超过杆塔的允许摇摆角时,将引起带电部分对杆塔构件的安全间隙不够,所以必须对其进行校验。允许摇摆角根据允许间隙用作图方法确定。一般情况下,在平地摇摆角不符合要求的情况比较少,但在山区或丘陵地带,摇摆角超过允许值的情况比较多,此时一般解决的办法是:①调整杆塔位置;②换用较高杆塔或允许摇摆角度较大的杆塔;③采用v 形、丫形等形状的绝缘子串;④孤立档距可考虑降低导线的设计应力;⑤加挂重锤或将单联悬垂串改为双联悬垂串等。

3.3 直线杆塔的上拔校验

在定位时,若直线杆塔位于低处,除需校验摇摆角外,还需对其进行上拔校验。当杆塔的垂直档距为负值时则必定有上拔力产生。而这种上拔力产生的气象条件一般为最低气温时,所以校验上拔时必须按此气象条件进行计算,或用此气象条件下的承载和应力计算模板系数k 值,选最小弧垂模板在定位图上找出杆塔的垂直档距对其进行校验。为了消除直线杆塔的上拔现象,可采用防止摇摆角过大的有关措施,必要时也可采用轻型耐张杆塔。根据经验,摇摆角常起控制作用,即摇摆角许可后,就不用再校验上拔了。

3.4 耐张绝缘子倒挂校验

定位于低处的耐张型杆塔和为抵消上拔而采用的轻型耐张杆塔,均将耐张绝缘子串上仰,致使部分绝缘子裙边积雨、积雪、积灰尘、污垢等,从而降低了绝缘子的绝缘强度。因此,当耐张绝缘子串在常年运行情况下时(即年平均气温、无风、无冰),则该串绝缘子应当采取倒挂方式装设。

3.5 悬垂绝缘子串垂直荷载的校验

在山区线路中,立于高处的杆塔,垂直档距往往比水平档距大很多,因而导线重量可能超过绝缘子串的承载能力。为防止这种现象,须使定位后高处杆塔的垂直档距小于绝缘子串承载能力相对应的最大允许的垂直档距。该最大允许垂直档距是用最大扭冰时的承载和应力计算的,若杆塔定位后的垂直档距换算至最大覆冰时的值大于此时取最大允许档距,则应调整杆位。如仍不能解决问题,可用双串或多串绝缘子以提高其承载能力,同时对横担也应作相应的强度检查和采取补强的措施。

3.6 导线悬挂点应力的校验

高处杆塔,两侧档距过大或悬点高差过大时,导线悬点的应力可能超过允许值,故定位中应当校验某些大档距或大高差档距的悬点应力是否超过最大允许值。若发现悬点应力超过允许值,可通过调整杆位及杆高,以减小高差或档距的办法来改善。在条件许可时也可以适当放松该耐张的导线,降低其水平应力。

二、加快电力系统数字化转型

新型电力系统的“新”主要表现为以下几个方面:

电源结构由可控连续出力的煤电装机占主导,向强不确定性、弱可控性出力的新能源发电装机占主导转变。

负荷特性由传统的刚性,纯消费性向柔性、生产与消费兼具型改变。

电网形态方面,传统电力系统是单向逐级输电为主,新型的包括交直流混联大电网、微电网、局部直流电网和可调节负荷的能源互联网。

运行特性的转变,传统电网是由“源随荷动”的实时平衡模式,大电网一体化控制模式。

新型电力系统是向“源网荷储”协同互动的非完全实时平衡模式,大电网与微电网协同控制模式转变。新型电力系统基本五大特征是清洁低碳、安全可控、灵活高效、智能友好、开放互动。

在新型电力系统下,电网运行逐渐呈现智能化、数字化的特点。发展“源网荷储一体化”运行急需“云大物移智链边”其中的云计算、大数据、电力物联网、边缘计算等技术手段,让电网系统配备拥有海量数据处理分析、高度智能化决策等能力的云端解决方案。从而实现各类能源资源整合、打通能源多环节间的壁垒,让“源网荷储”各要素真正做到友好协同。

数字技术为新型电力系统建设带来诸多新可能:广泛互联互通、全局协同计算、全域在线透明、智能友好互动。因此,新型电力系统建设必然要求数字技术与能源技术深度融合、广泛应用,实现电网数字化转型。电网数字化转型与新型电力系统构建需要相互作用、相融并进,没有电网数字化转型就没有新型电力系统。

智慧“双碳”微电网场景进行数字孪生,有效实现源网荷储一体化管控。整体场景采用了轻量化建模的方式,重点围绕智慧园区电网联通中的源、网、荷、储四方面的设备和建筑进行建模还原。

采用轻量化重新建模的方式,支持 360 度观察虚拟园区内源网荷储每个环节的动态数据,通过自带交互,即可实现鼠标的旋转、平移、拉近拉远操作,同时也实现了触屏设备的单指旋转、双指缩放、三指平移操作不必再为跨平台的不同交互模式而烦恼。

还搭建过智慧电力可视化解决方案,以数字化为载体,依托数据共享优势,将专业横向融合,打破系统间的信息壁垒,把不同类型的分布式资源“聚沙成塔“,构建源网荷储一体化互动体系。实现从能源生产侧到应用侧的数据监测、数据融合、数据显示、设备维护联动管控,让“源网荷储”各要素真正做到友好协同。

围绕电厂负荷监测、调节策略、执行考核与效果分析三个层级,部署一套具备自主调控、快速响应、科学研判的综合性、多功能、集约化智慧电力综合管控平台。

可视化大屏将碎片化、小规模、多类型的分布式电源(distributed generator, dg)、储能系统、柔性负荷等众多可调节资源进行聚合协调。从负荷预测、运行效果、调度优化、电网互动、策略配置、市场交易等维度出发,贯穿了发、输、变、配、用各个环节。深化电力需求侧管理,实现对分布式资源的实时采集与科学配置。同时为并网运行后,对大电网的调频、调峰、调压等做辅助支撑,缓解电网运行压力。

应用丰富的图表组件,选以分类、组合、排序等风格,简化数据浅显易懂,让分类施策取代粗放管理,让系统量化分析取代决策者主观判断,让决策者一眼望穿负荷特性,并在必要的时刻及时调整配网运行方式。在强化电厂的运行调控能力的同时,也提高了经济效益降低防范风险。

可视化大屏有效聚合可控负荷的模式,突破传统电力系统之间的界限,充分激发和释放用户侧灵活调节能力,通过市场化因素引导用户用电行为调整负荷曲线,促进能源供应效益最大化。过去离散刻板的静态数据在hightopo可视化技术的加持下,充分激发了数字的活力,赋予动态的加载效果,更加利于揭示数据之间复杂关系。

同样也支持采用 3d 轻量化建模形式,将多种复杂的电力管理信息聚集在虚拟仿真环境下,结合专业分析预测模型,对运维设备、运行状态、控制系统进行实时动态采集与多角度并行分析,辅助决策者管理工作的颗粒度更精细、响应更敏捷、行为更智能。

新型电力系统发电侧重主体发生变化了,以后以光伏和风电等新能源发电为主,这样就会从原来集中式电源模式变成“集中和分布式”共同发展的模式。同时由于光伏和风电具有波动性、间歇性和随机性的特点,所以储能在新型电力系统的运作中就变得尤为重要。所以新型电力系统就是要建立“源网荷储”的运作模式,也就是电源、电网、负荷、储能各环节协调互动,实现安全稳定的运行。

可视化把不同类型的分布式资源“聚沙成塔“,构建源网荷储一体化互动体系。实现从能源生产侧到应用侧的数据监测、数据融合、数据显示、设备维护联动管控,让“源网荷储”各要素真正做到友好协同。

Top